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We derive exact formal expressions for the self-energy, Cc”), describing the in- 
teraction of n particles with one another and with the rest of the particles in an 
interacting quantum N-particle system In contrast to traditional treatments, in 
which the single-particle self-energy is built out of interactions of a particle with the 
rest of the system, here a general n-particle quantity, Cc”), is obtained in a straight- 
forward fashion by integrating the exact N-particle Green function, GfNl, over the 
coordinates of N - n particles and inverting An alternative expression, based on 
the canonical many-body equation of motion for the Green function is also discussed 
and compared with that derived through the integration process. The methodology 
is developed with respect to two-particle states, with the two-particle Green func- 
tion being the central quantity from which the single-particle self-energy and Green 
function are derived It is suggested that the two-particle Green function be cal- 
culated directly in six-dimensional space in a two-particle generalization of density 
functional theory and the corresponding local density approximation. Methods for 
the calculation of the single-particle, II = 1, self-energy and effective single-particle 
t-matrix are discussed, and the methodology is illustrated by means of calculations 
on a model system 

I INTRODUCTION 

The consept of self-energy figures prominently in the studies of interacting quan- 
tum many-particle systems This quantity is generally defined in terms of the energy 
change that accompanies the addition of a single particle to the interacting system 
and incorporates exactly the effects of correlation and the statistics, Fermi-Dirac or 
Bose-Einstein The single-particle self-energy is non-local, generally complex, and 
also energy-dependent Its evaluation is ususally associated with various approxi- 
mate, perturbative or decoupling, schemes as described[l, 21 in the literature. 

In this paper, we introduce a point of view which differs from canonical treat- 
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ments of interacting quantum systems. Instead of building the self-energy from indi- 
vidual contributions to the interaction of a particle with the rest of the system, e g , 
summations of selected diagrams, we treat the entire system of N interacting three- 
dimensional particles as a single particle in a configurational space of 3N dimensions, 
In the non-relativistic limit considered here, the external potentials acting on the 
particles as well as their mutual interactions appear as a time-independent externally 
applied field Consequently, the Green function of the system can be expressed in the 
familiar form obtained in the traditional single-particle picture It is shown that from 
a knowledge of the Green function describing n interacting particles (in an N-particle 
system, with N being either finite or infinite) Green functions for m interacting par- 
ticles, m < n, can be obtained directly Inverting the resulting m-particle Green 
function leads directly to the self-enrgy of the m-particle unit, extending the concept 
of self-energy to an m-particle quantity. It is also shown that the solution of the 
equation of motion for the many-particle Green function leads to an alternative form 
for this quantity The two forms are compared and contrasted in the final discussion 
Furthermore, the formulation in terms of t-matrices for both kinds of Green functions 
given below provides a particularly flexible framework for the development of approx- 
imate computational schemes for evaluating Green functions and the corresponding 
self-energies 

Another aim of the discussion is to indicate certain formal connections between 
canonical many-body theory and band theory, the methodology used in the study of 
the elctronic structure of matter, and properties related to it Band theory is cur- 
rently being implemented within the context of the local (spin) density approximation 
(L(S)DA) of density functional theory (DFT)[3]. The DFT-LDA approach has been 
very successful in the treatment of metallic solids[4], but is often criticized for its 
approximate treatment of correlation effects It is known to provide a poor desription 
of the gap in the single-particle spectrum of semiconductors and insulators, either 
understimating the gap, or missing it altogether, predicting metallic behavior It also 
fails to describe the volume collapse that accompanies increased pressure in many 
elemental solids of the Lanthanide and Actinide series. Possibly most important is 
the lack of a well-defined procedure for extending the DFT-LDA approach to alleviate 
these shortcomings 

It is shown below that it is possible to view DFT-LDA and canonical many- 
body theory from a single perspective as two parts of a coherent whole As such, 
it affords a unique, formally exact procedure for improvement, and provides a single 
parameter, namely the number of particles treated explicitly, as a parameter governing 
the convergence to exact results. 

The following discussion is confined to the non-relativistic limit so that the inter- 
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action between two particles is taken to be instantaneous, U(rt, r’t’) = U(r, r’)a(t-t’) 
It is, however, general enough to accommodate a diverse class of potentials that in- 
clude the nuclear forces in an atom or a molecule, as well as in extended systems such 
as a solid 

II THE GREEN FUNCTION AND SELF-ENERGY 

We confine our attention to an interacting, N-particle system described by the 
Hamiltonian, 

where h(zi) is the Hamiltonian describing a single particle and includes the kinetic 
energy and any external potential acting on the system, while CJ(zi - zj) denotes the 
interparticle interaction Here, z,, = (r,,t,) is a combined space-time coordinate for 
the nth particle, and d%, = d3r,dt,. (This coordinate can also incorporate the spin 
variable but this will not be made explicit in the discussion.) 

We begin with the familiar[5,6] equation of motion for the many-particle Green 
function Treating explicitly the case of fermions, we have 

xG(“+‘)(x1,. .,x,+l;x;,... I x:+11 

= ~S@l(xl - .:)(-l)i-i 
i=l 

x G-(x2, ,Gl,4, . r444+1r 14. (2) 

Also, any external “single-particle” potential, such as that due to the nuciei in a 
molecule or a solid, can be incorporated explicitly inside the brackets in the last 
expression For the sake of clarity of presentation, we continue to treat explicitly the 
uniform case, h(z) = 0: 

It is seen that in general the equation for the n-particle Green function contains 
both the n + l- and the n - l-particle Green functions Defining the free-particle 

propagator, Gs = [ifL% + Ev”]-~, setting all ti = t and t: = t’, (describing the 
probability amplitude of creating all particles at time t’ and annihilating them at 
time t), and Fourier transforming with respect to t’ - t into the energy domain, we 
obtain, 
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x G(N-‘)(rzr ,rN,‘:r’ I~:-l>~:+l? ,d,,E -WI 

(3) 

This expression is properly antisymmetric with respect to interchange of fermion 
coordinates It describes the probability amplitude that the system of N particles 
propagates from a state with position ri, , rh to the state with positions rl, , rN 

Let us now return to Eq (3) We use the definition of the Green function as a 
probability amplitude for creating (destroying) particles to sum (or integrate) over 
the coordinate of a given particle, say particle 1, and interpret the result as the Green 
function for N - 1 particles moving in the presence of a single particle Assum- 
ing that h(l), the Hamiltonian associated with a single, non interacting particle, is 
translationally invariant (or uniform), this summation yields the k = 0 element of 
the single-particle Green function, Go. Since this is given by the general expression 
Go(k = 0;~) = [z - h@)(k = O)]-‘, the remaining integration yields a N - l-order 
Green function which can be written in the form, 

@N-l+) = Lz - $-‘)]-1 (4) 

Here, the self-energy CcN-‘) is non-local in the coordinates of the N - 1 particles, 
complex, and energy dependent As defined here, it also contains a shift by the 
energy at k = 0 of a uniform (or periodic) single-particle system, but that shift 
will not be shown explicitly. Thus, summation over the coordinates of the Green 

function elements assoctated with a single particle in GcN) yields a Green function, 
GcN-‘), describing the motion of N - 1 in the N-particle system Let us denote this 
reduced-order quantity by a hat symbol, (because it contains a shifted self-energy), 
and refer as downfolding to the process of summing over the coordinates (or Green 
function elements) associated with given particles in the system In operator space, 
the previous discussion can be summarized in the form, 

where in the coordinate representation the summations are to be interpreted as inte- 
grals over the volume, 0, of the system More generally, it follows from this discussion 
that a reduced Green function for n particles can be obtained by downfolding the ex- 
act N-particle Green function, 

4 



over the coordinates of N - n particles Finally, we see that the se[f-energy for a 
system of n particles is given by the general expression, 

The single-particle Green function and self-energy can now be obtained by setting 
n = 1, and downfolding GcN) over the coordinates of N - 1 particles 

III THE T-MATRIX 

It is starightforward to cast the formal developments presented above in terms of 
an effective t-matrix Here, the t-matrix of the exact N-particle system is defined by 
the expression, 

GcN) = GiNN’[l + T’~‘G~~‘], (8) 

which in the space of N particles can be developed in the form of a Born series, 

T(N) = U(N) + u(N)G~~)u(N) + . . . (9) 

Here, iYIN) contains the mutual interactions of all N particles and, in N-particle 
space, appears as an external potential. The quantities GhNN) describe the force-free 
propagation of the entire system of particles It is straightforward to show that the 
downfolding procedure described above leads to a reduced-order Green function which 
can be expressed in terms of a t-matrix For n < N, we have 

where ‘?tn) is obtained through a downfolding process over the coordinates ‘of N - n 
particles, 

Also, the self-energy in n-particle space is given by the well-known relation, 
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It follows from the derivation, that the self-energy obtained through this procedure is 
identical to that obtained through the Green function, Eq (7) However, the evalua- 
tion of the t-matrix is considerably easier than that of the Green function because the 
t-matrix is non vanishing when all of its arguments lie in the potential region Thus, 
the downfolding process extends only over a finite region, namely where the potential 
is acting, rather than over all space as required when dealing with the Green function 
itself 

IV. NUMERICAL RESULTS 

The previous discussion can be illustrated by means of a “small” one-dimensional 
system described by a Hubbard-like model Hamiltonian, 

This Hamiltonian is taken to describe a system of four electrons with total spin zero 
arranged on the four sites of a closed linear ring characterized by site energies ei = 0.0 
(uniform potential) The quantities Ii) denote the state associated with site z, tij is a 
transfer integral between sites z and j, and U; is an on-site Coulomb repulsion term 
that is associated with two electrons of opposite spin occupying the same site. The 
quantities niO are the number operators for an electron on site z with spin 0. 

The Hamiltonians in two-particle space and in four-particle space can be defined 
from that in Eq.(13) on the tensor product of the corresponding single-particle spaces 

Let $lL,, ,n,) denote the identity operator in m-particle space of the set of particles 

tnl,nz, ,nm)l and let H!~/,nz, ,n,) be the corresponding Hamiltonian. With Hi’) given 
by Eq (13), we have, 

(14) 

where U@) denotes the operator describing the interaction of two particles in two- 
particle space The Hamiltonian of the four-particle system can be constructed in a 
straightforward application of combining tensor products of spaces, and adding the 
corresponding interparticle interaction 

Now, the a four-particle Green function for this system can be obtained by in- 
verting the four-dimensional structure formed by the orthogonal combination of four 
four-sited rings in the manner just indicated. This space contains 256 configurations 
describing all possible arrangements of four electrons, two with spin up and two with 
spin down, on the four sites of the ring These configurations are consistent with the 
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Pauli exclusion principle, in that an “infinite” ( M 107) potential was associated with 
any configuration in which two or more electrons of the same spin occupy the same 
site In the calculations reported here, we restrict the range of electron hopping, t, to 
nearest neighbors, and set U/t = 10.0 Al so, for ease of illustration, the spectra are 
exhibited for values of the energy that contain an imaginary part, 9E = t/4 

An approximate evaluation of the Green function and the self-energy can be made 
by considering separately the sixteen different two-particle Green functions obtained 
for each configuration of the other two particles in the system There are sixteen 
such configurations whose mutual interactions are neglected Thus, each two-particle 
unit is described by an effective Hamiltonian which corresponds to each possible 
configuration of the remaining two particles in the system 

The solid line in the upper panel of Fig 1 shows the exact single-particle spectrum 
obtained from downfolding the exact four-particle Green function The dotted line 
corresponds to the approximate evaluation just described The lower two panels 
of the figure shows the real and imaginary parts of the corresponding site-diagonal 
element of the self-energy. It is seen that the approximate spectra reproduce rather 
well the main features of the exact ones, in particular the impurity-like peak at about 
WE = U The exact spectra lead to a narrower distribution of eigenvalues (band 
in solids) since they take proper account of the configuration interactions Because 
of the Pauli principle, which prevents two particles of the same spin from occupying 
the same site, the available configuration space of the system is reduced leading to 
a narrowing of the “band” at the four-particle level as well as at the single-particle 
level The difference in structure inside the main part of the spectrum between the 
exact and approximate spectra can be attributed to the interactions among different 
two-particle configurations which are ignored in the approximate treatment. We 
also note that the approximate treatment misses the many-body contribution to the 
spectra at the bottom of the band. Finally, we note that the self-energies agree 
considerably better than the Green functions This is an important point to keep in 
mind when basing the treatment of interacting quantum systems on the self-energy. It 
is well known that even when the self-energy is approximated to be strictly’local, the 
corresponding Green function maintains its global character It is seen that basing an 
approximate treatment of interacting quantum systems on the Green function rather 
than the self-energy places much more demanding criteria on agreement with exact 
results but can also be expected to lead to a more accurate procedure 

The last comment provides a strong motivating factor for developing the for- 
malism introduced in this letter. In the case of non-relativistic particles, the Green 
function of the entire system can be formulated within essentially a single-particle 
formalism and, since the time-independent Hamiltonian acting on the system as a 
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whole is known, (consisting of interparticle interactions), this Green function can be 
trivially written down. As has been shown, an integration over the coordinates of n 
particles yields the exact N - n-particle Green function, but with its poles shifted 
by the energies of n single, non-ineracting particles at the k = 0 point[8] The corre- 
sponding self-energy follows upon inversion of this quantity, and the extreneous shifts 
in the spectra mentioned above can be removed in a straightforward manner This 
approach also illustrates in a natural way the possibility of extending the self-energy 
concept to describe the interaction of rz particles with the remaining particles in the 
system As described above, it also leads to transparent approximate schemes for its 
evaluation 

It is also instructive to consider the effect of the electron density on the single- 
particle Green function, shown in Fig 2 The figure shows the single-particle density 
of states associated with two electrons of opposite spin on a linear ring of four sites 
(solid line), ten sides (dashed line), and twenty sides (dotted line). The various sys- 
tems are described by a Hubbard Hamiltonian, with a value of the on-site interaction 
equal to 10.0. It is clear from these curves that as the number of sites increases, the 
spectrum approaches that of a single non interacting particle, with the weight of the 
impurity-like peak at E x 10.0 becoming progressively weaker. This behavior is to 
be expected since as the electron density decreases, the likelyhood that two electrons 
will occupy the same site decreases proportionately. In a later section, we introduce 
a methodology which is directed at incorporating the presence of a finite density inti 
the many-particle Green function and hence into the single-particle Green function 
and self-energy. 

V. CANONICAL MANY-BODY THEORY 

An alternative approach to the calculation of the self energy is provided by the 
equation of motion of canonical many-body theory, Eq.( 1) For the sake of clarity of 
exposition, we confine our discussion to the two-particle case This is in an important 
case because the two-particle description of electronic states corresponds exactly to 
the two-particle nature of the Coulomb interaction. We recall the defitibn of the 
t-matrix from Eq.(9), in terms of which the single-particle self-energy is given by the 
expression[lO], 

This single expression of is taken to include both the direct and the exchange term of 
the self-energy, through an appropriate definition of the t-matrix in terms of the fully 
symmetrized (antisymmetrized) free-particle propagator, G(‘) It is important to note 
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that in energy space, the self-energy can be written as a convolution, its imaginary 
part, SC, taking the form, 

CEC(r4,r2;E) = -i//d3rrd3rs/ dwSGs(rr, rs;~)ST@l(r~, r21r3, P.,, E -w) 

(16) 

It is also instructive to consider the effect of the electron density on the self-energy 
and the Green function Figure 3 shows the single-particle Green function obtained 
directly from the equation of motion, and thus corresponding to a self- energy of 
the form of Eq.(15) The solid line corresponds to a system of two electrons on four 
sites, and the dashed line to two electrons on ten sites, each system described by a 
Hubbard Hamiltonian with U = 10.0 It is interesting to note that, in contrast to 
Fig. 1, increasing the number of sites, and thus lowering the density, does not affect 
the structure of the spectra in any significant way This illustrates the fundamen- 
tal difference between the single-particle Green function obtained in the downfolding 
procedure discussed above, and the one derived from the equation of motion, The 
latter contains only those terms of the two-particle Green function which are asso- 
ciated with two electrons occupying the same site and thus feeling the full effect of 
the Coulomb repulsion The downfolded Green function, on the other hand, contains 
also contributions from configurations in which the electrons are on different sites 
and thus not interacting through U Some further discussion of these two different 
kinds of single-particle Green function is given in the final section We now address 
the determination of the two-particle t-matrix in a many-particle system, from which 
the self-energy in either the downfolding or equation-of-motion approach is obtained. 
This can be done through a consideration of a finite electron density 

VI DFT FOR N-PARTICLE STATES 

In order to account for the effects of a finite electron density, especially in infinite 
systems, we generalize the concept of DFT to the space of N particles 

We consider the Hamiltonian of a fully interacting N-particle system, 

(17) 

where Vf is the Laplacian operator for particle z, IJ; = u(ri) is a single-particle 
potential for particle 2, and uij = u(ri, rj) is the interparticle potential, with vii = 0 
Ordinarily, we are interested in the solutions of the many-particle wave equation, 

H’D = EQ,, (18) 
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where Q denotes the many-body wave function for the interacting system 
We consider the density n(r) for the (non-degenerate) ground state of the system 

The usual proof of the uniqueness of the external potential as a functional of the 
density proceeds by reductio ad absurdurn Let there be two external potentials, u(r) 
and u’(r), differing by more than a constant and each giving the same ground-state 
density n(r) Let also fi and I?’ be the corresponding many-body Hamiltonians, and 
\I, and VI the associated wave functions Both I? and I?’ would correspond to the 
same ground state density, but the wave functions Q and Q’ would be different Take 
Q’ to be a trial wave function for the system described by & (which includes v(r)) 
and use the fact that the expectation value of the energy is a minimum for the correct 
wave function to obtain the result 

E. < (‘L”l@I”) = (‘P’@‘llIr’) + (Q’ll;r - @I”) 

= Eh + 
I 

n(r) [u(r) - v’(r)] d3r, (19) 

where E. and EA denote, respectively, the energy of the N-electron system (excluding 
nuclear-nuclear repulsion), under the influence of v and Y’. The integral J n(r)v(r)d% 
describes the interaction of the charge distribution with the external field. Similarly, 
taking Q as a trial wave function for the system described by Ej’, we have 

E:, < (Q@l’I’) = (u-/if/~) + (‘I’[$ -iii’@) 

= Eo - 
I 

n(r) [u(r) - v’(r)] d3r, cw 

Adding the last two equations, we obtain 

Eo + E:, < E:, + Eo (21) 

These inequalities constitute a contradiction to the premise that there can be two 
different v’s, differing by more than a constant, that give the same density n(r) for 
the ground state of the system This proves the theorem (the second theorem of 
Hohenberg and Kohn[lG]). We now show that this theorem carries through virtually 
intact in a hyperspace in which n particles are considered as a single particle We 
consider explicitly the case n = 2 

Let us consider again the Hamiltonian of Eq (17) but as a sum of distinct, non- 
overlapping pairs of particles (so that a given particle belongs to only one pair), 
labeled by I, and write the Hamiltonian in the form, 
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This Hamiltonian is the same as that above, Eq.(17), except that it is expressed in 
terms of pairs of particles. We consider explicitly systems with infinite numbers of 
particles (or with finite but even numbers) so that the partition into pairs can be 
effected exactly Also, we consider singlet pairs only so that exchange effects on the 
wave function arise only from the interchange of particles across pairs This partition 
does not constitute a restriction for zero spin systems Now, we note that for each 
such pair we can write, 

where the coordinates of the two particle have been combined in a single coordinate 
in six dimensions 

x=(x~~Yi~zi~xj~Yj~zj) 

= (21, %?, 23, ~4rGr a). (24) 

This six-dimensional coordinate forms the direct part of the phase-space (hyperspace) 
of the two-particles, in which the pair appears as a single particle The other terms 
that appear in Eq (22) are uniquely defined in terms of the original Hamiltonian 
Thus, with x = (ri, rj), we have, 

Vr E V(X) = V(r;,rj) 

= 44 + 4rj) + Iri A rjl 1 

and 

ViJ E V(x,x') = V(ri, rj;r:,ri) 

=Irilr:I+lriir:I+/rjir:l+IrjIr:/ , (26) 

This completely defines the Hamiltonian in Eq (22) 
The important feature to notice about this Hamiltonian is that it has a form 

identical to that in Eq (17) Therefore, it suggests a treatment using a single-particle 
framework, where the particles are in six-dimensional (rather than three-dimensional) 
coordinate space This form of the Hamiltonian allows one to carry through essentially 
unchanged the proof of the Hohenberg-Kahn theorem so that it holds in the phase- 
space of two-particles (or n particles) Thus the potential, and hence the energy, is a 
unique functional of the density, so that we can write for the energy of the electron 

is=? 
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EMxN = TM41 + GJ(xI~ (27) 

where the various terms are assigned their familiar meaning from ordinary DFT, but 
must be interpreted as quantities in an appropriate phase space For example, for 
n = 2 the term U[n(x)] contains all electrostatic interactions among and between 
particles in six-dimensional space, as well as their interaction with the nuclei 

This generalization of the Hohenberg-Kohn theorem is a straightforward conse- 
quence of the observation that the original proof is not dependent on dimensionality. 
In other words, the theorem holds intact in a configurational space of 3N dimensions 
for systems described by the Hamiltonian of Eq (22) As is the case with respect to 
its canonical form, nDFT yields an energy functional which is stationary with respect 
to variations in the density and assumes its lowest value for the correct density of the 
ground state 

A The Kahn-Sham equations 

In order to make DFT a useful1 tool, explicit expressions for the energy functional 
E[n] are needed The Kohn-Sham (KS) f ormalism[ll] provides such an expression for 
ordinary DFT by writing the kinetic energy in terms of single particle states, which 
can be determined in a straightforward self-consistent scheme, and casting the rest 
of the kinetic energy as well as the non-local part of the potential energy into the so 
called exchange and correlation functional, for which suitable approximations such as 
LDA can be found The KS formalism is reviewed in a number of texts and review 
articles[l2,13] and only some of its more salient features will be mentioned here 

We will now attempt to make clear which formal results of the KS formalism hold 
irrespective of dimensionality and which must be justified when applied to a space 
with a dimension larger than three 

With this in mind, we introduce single-particle orbitals, generalized KS functions, 
such that 

44 = c l~I(X)12 (‘w 
I 

The meaning of these functions as well as the extent of the sum over 1 is commented 
upon below For the moment, we consider these functions as the solutions of an 
effective “single-particle” Schrodinger equation obtained as follows 

We define a single-body potential by the relation, 

V(x) = ,ri 1 rj, + / dszc’V(x, x’)+‘) 
(29) 

r 
, 



where x = (r;, rj), and V(x, x’) is given by Eq.(26). For a given density, the energy 
is evaluated in the usual manner, 

J%(X)] =Ts[n(x)] + 1 @sV(x)n(x) 

+ JW)l + ~xM41, (30) 

represents the kinetic energy functional of a non-interacting gas, 

c+(x)] = ; 1 dsx / @x’n(x)n(x’)v(x,x’), 

and E&z(x)] contains the difference between the exact kinetic energy T[n(x)] and 
that represented by Ts[n(x)], as well as the difference between the exact interparticle 
interaction and its “classical” approximation[l4] given by the expression 

~x,[n(x)] = ~[n(x)] - T&(X)] + J d% / d6m 
x V(Xl,XZ) [+%x2) - +Q)4X2)1~ (33) 

Now, the single-particle Schrijdinger equation yielding the solutions @r(x) takes 
the form, 

r 

[p: + V(x) + pxc(x,] QI(X) = EpP’r(x), 
where the eschange-correlation potential is given by the expression, 

Up to this point, the KS scheme is formally identical to that originally/proposed 
for the case of three-dimensional systems Most importantly, the wave functions 
(orbitals) Qr(x) are to be interpreted only as “aid to calculation”, their function 
being to reproduce the density by means of Eq (28) 

The proper implementation of the variatonal principle to the energy functional 
of Eq (27) is carried out by restricting the set of trial densities to those which are 
v-representable, i e , to densities for which a corresponding local external potential 
can be found for the interacting Hamiltonian The assumption that underlies the 
derivation of the KS scheme is that each of these v-representable densities can also 
be represented by a non-interacting Hamiltonian which leads to the single particle 
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Schrodinger equation of the form of Eq (34). Such d ensities are said to be interacting 
as well as non-interacting v-representable. For ordinary particles the assumption is 
justified when the ground state is non-degenerate [ll], but even for degenerate ground 
states a rigorous extension of the Kahn-Sham theorem can be formulated. This is done 
by asuming forms for the kinetic energy functional which include a fully antisymetric 
wave function rather than the product states used for Eq (31) In order to generalize 
the formalism to n-particle states and construct the kinetic energy functional in n- 
particle space, one therefore has to ascertain that the proper symmetry of the wave 
function with respect to zndzvidual part&s is retained when the system wave function 
is written in terms of n-particle states In the remainder of this section, we will outline 
how this can be done 

We begin by noting that any non-interacting state in conventional three dimen- 
sional space can be constructed from a linear combination of Slater determinants 
Using Laplace’s theorem[l5] the expanded form of a determinant of order N can be 
expressed as the sum of products of determinants of lower orders, ni, such that in each 
product Gin; = N. Furthermore, applied to a Slater determinant, this means that 
each n-order determinant can be associated with the coordinates of a given set of n 
particles distributed over all possible combinations of N states for the non-interacting 
system taken n at a time This is consistent with the partition of the Hamiltonian 
into distinct sets of particles while preserving the symmetry of the wave function 
required by the exclusion principle. 

Now, allow the interaction between particles within each unit to set in which re- 
sults in an external potential acting on the particles described by the Hamiltonian 
of Eq.(22). The various determinantal states now evolve under the action of this 
potential resulting in a system which is “partially” interacting in the context of or- 
dinary particles but strictly non-interacting in terms of n-particle units However, 
the wave function written in terms of the final n-particle states, and corresponding 
to a non-interacting system in hyperspace, leads to a density in that space which 
is by construction non-interacting *representable in hyperspace Furthermore, this 
wave function is fully antisymmetric with respect to the coordinates of mdividual 
(three-dimensional) particles. 

This discussion has also revealed the extent~of the summation over I in Eq.(28) 
This index runs over all possible combinations of fully interacting n-particle states 
which evolve out of combinations of the states of an N-particle system considered n 
at a time 

VII APPLICATION TO SOLIDS 

The determination of the two-particle Green function and t-matrix requires the 
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solution of Eq (34). This is a particularly taxing task in the case of an infinite system, 
such as a solid, and depends crucially on the prior approximate knowledge of the 
exchange-correlation energy and potential Once an exchange-correlation potential 
has been determined, (for possible ways of accomplishing this, see below), methods 
well-established in the treatment of the electronic structure of solids within band 
theory can be used to obtain the solution One possible way is to generalize the 
well-known Green function method of Korringa, Kahn, and Rostoker (KKR) to six- 
dimensional space, as discussed in previous work[9] Such an approach would lead 
to a two-particle-state representation of the electronic structure The corresponding 
single-particle quantities, self-energy and Green function can the be obtained from 
the procedures outlined above (see also discussion in final section) 

The determination of the exchange-correlation potential could in principle be 
carried out in analogy with the determination of that potential in single-particle space. 
Here, one would treat numerically a collection of six-dimensional particles which 
interact via the potential of Eq.(26). In th’ d t is e ermination, the Coulomb repulsion 
among the members of any one pair must be turned off. This potential appears 
as an external field, and its presence would preclude the occurance of a uniform 
charge density. Also, the intra-pair potential appears explicitly in the Schrodinger 
equation A numerical representation of the exchange-correlation energy as function 
of (uniform) two-particle density would then be easily applicable within the local 
density approximation. 

VIII DISCUSSION 

The formalism presented above provides one way for attaining a fairly wide and 
systematic treatment of correlation effects as they manifest themselves in the calcu- 
lation of the electronic structure of matter Its basis is not dissimilar from that of 
recent works[lO, 171 in the literature in which the LDA or the GW approximation 
are used as the basis for corrective treatments determining the two-particle t-matrix 
and hence the single-particle self-energy The most important difference between the 
present proposal and those works is the suggestion that DFT (and the LDA) can be 
extended and applied in two-particle space, endowing the entire process with a self- 
consistent character In this regard, the methodology is very similar to that proposed 
by Ziesche[l8] and discussed elsewhere in this volume 

The use of DFT-LDA in two-particle space depends crucially on the (approx- 
imate) knowledge of an exchange-correlation functional One possible method fro 
determining this functioanl has been suggested in the body of the paper Given such 
a functional, methods used traditioanlyy in the determination of the electronic stiuc- 
ture, such as KKR, can be generalized[g] t o obtain the two-particle Green function 
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and, hence, the single-particle Green function and self-energy. Because the formalism 
has revealed two possible procedures for obtaining the single-particle Green function 
from a higher-order Green function, it is useful to compare and contrast the two 
processes 

An intuitive understanding of the different Green functions can be obtained 
through a comparison with single-particle Green-functions for defected systems Con- 
sider, for example, a binary (possibly disordered) alloy The Green function describing 
the entire system is given as the trace of the Green function operator over the entire 
space, and it would correspond in a heuristic sense, to the downfolded Green function 
defined above A partial trace over the space occupied by one of the alloy species 
yields a partial Green function associated with that species which is analogous to 
the quantity obtained through the solution of the equation of motion This latter 
process gives the Green function for particles which are always under the influence 
of the potential, whereas the downfolding procedure incorporates configurations in 
n-particle space in which the particles do not interact As may be expected, the two 
types of Green functions coincide in the limit of a full band. 

One advantage offered by the present formalism is the possibility of treating a 
large spectrum of electron-structure realted properties, such as ground-state proper- 
ties, gaps and satellites, and transport within a unified and systematic framework. 
Although the method relies on a static potential in two-particle space, it does yield 
energy-dependent and non-local self-energies, which are in general complex quanti- 
ties Whether these self-energies provide an accurate treatment of materials properties 
could be determined through application 
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